Direct Measurement of Lifetime of Heavy Hypernuclei at CEBAF

Liguang Tang Amur Margaryan

Hampton/Jlab
Yerevan Phyiscs Inst.

PR02-017 (E99-003/E95-002)

Physics Motivations

- Study hadronic weak interactions by the unique $\Lambda N \rightarrow NN$ (nonmesonic) decay in the nuclear medium after formation of Λ -hypernuclei
- Examine the role and limit of the empirical rule of $\Delta I = 1/2$ rule in the hadronic weak interaction models
- Provide crucial information on the short range nature of the ΛN interaction

Unresolved Issues

- The nature of $\Delta I=1/2$ rule is unknown
- Chiral effective field theories in SU(3) realm with $\Delta I=1/2$ failed to describe hadronic decay rate in the nuclear mudium
- Is this rule violated in $\Lambda N \rightarrow NN$ thus weak model needs $\Delta I=3/2$ terms and how much?
- Γ_n/Γ_p is directly related to the violation level of $\Delta I=1/2$ rule:

$$\Gamma_{\rm n}/\Gamma_{\rm p} \le 0.3$$
 $\Delta I=1/2$ rule hold

$$\Gamma_{\rm n}/\Gamma_{\rm p} > 0.3$$
 Need $\Delta I = 3/2$ terms by unknown natures

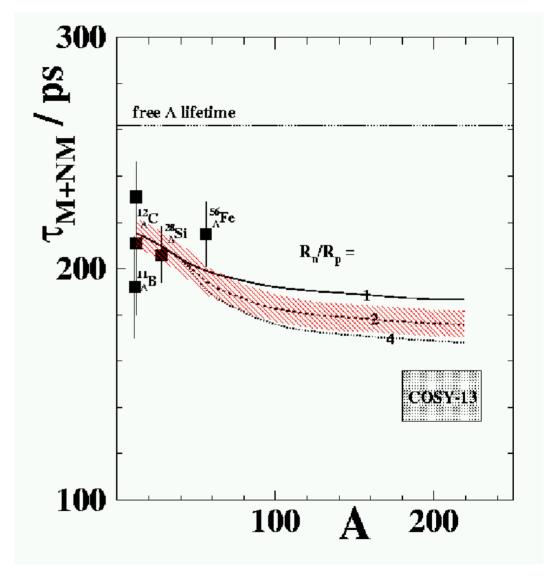
Measurements for Light Hypernuclei (KEK)

- $\leq 10\%$ errors in τ_{Λ} but insensitive to $\Gamma_{\rm n}/\Gamma_{\rm p}$
- Asymptotic τ_{Λ} (~200ps) hints small Γ_n/Γ_p thus not strong violation of $\Delta I=1/2$ rule
- Direct measurement of Γ_n and Γ_p is crucial but experimental errors were too large:

$$\delta(\Gamma_{\rm n}/\Gamma_{\rm p}) \sim 100\%$$

although $\Gamma_{\rm n}/\Gamma_{\rm p}$ is given about 0.6-1.0

■ Theory needs $\delta(\Gamma_n/\Gamma_p) \le 20\%$ accuracy


Measurements for Heavy Hypernuclei (COSY)

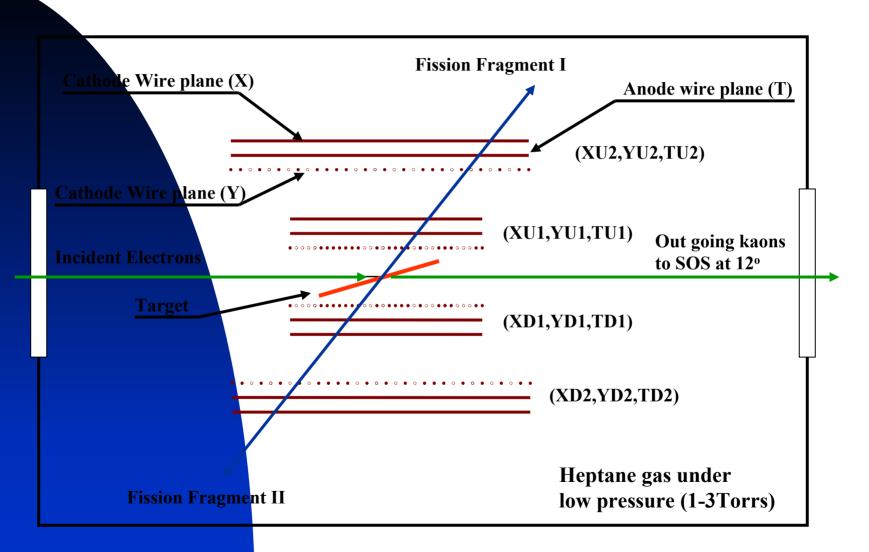
- Impossible to directly measure of Γ_n and Γ_p
- Reasonable sensitivity of Γ_n/Γ_p to τ_{Λ}
- **COS**Y measurement was indirect
 - Recoil distance \Rightarrow Lifetime
 - Model dependent
 - Large systematic error (≥15%)
 - Stangeness and hypernuclear production were not positively identified
- **Result shows conflict by hinting high** Γ_n/Γ_p

Illustration

From COSY-13 results:

- 1. Strong violation of $\Delta I=1/2$ rule?
- 2. Error still too large.
- 3. Hypernuclei?

W. Cassing et al., nucl-ex/0108027 (2001), submitted for publication on Acta Physica Polonica B.


Thrust of JLAB Experiment

- Direct Lifetime measurement from decay time spectrum of Bi-Λ-hypernuclei (A=208)
- Gate positively on strangeness and hypernuclear production
- Minimized systematic error
- Maximized overall precision (≤5%)
- Examine the A dependence by comparing KEK and COSY results
- **Examine** the range of Γ_n/Γ_p , although not directly measured

Technique of JLAB Experiment

- Unique beam structure (1.67ps width and 2ns separation)
- Good kaon detection (SOS) and production time reconstruction to directly point to time zero and positive identification of strangeness and hypernuclear production
- **Excellent** identification of $\Lambda N \rightarrow NN$ decay from fission
- 2ns gate for kaon and fission fragment coincidence selects hypernuclear production and decay only
- Very low accidentals
- Excellent fission fragment detection by Low pressure MWPC $(\sigma_t \approx 130 \text{ps} \text{ and } \sigma_x \approx 150 \mu \text{m} \text{ per chamber})$ and sensitive only to high Z fragments
- Precise prompt time spectrum measurement from proton and FF coincidence that will be naturally contented in the raw data taking

Schematic View of Experiment

Expected Singles, Accidentals and KID Background

SOS

- Kaons: $\sim 1/\text{sec}$

- Protons: $\sim 50/\text{sec}$

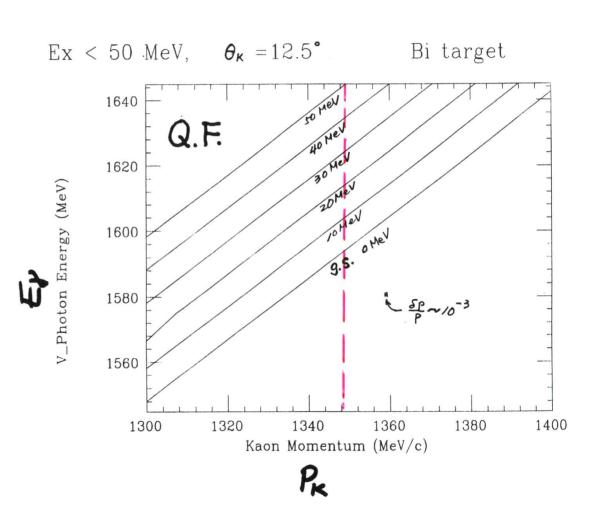
Pions: $\sim 500/\text{sec}$

■ FF detector: ≤ 100K/sec

(K,FF) coincidence: $\sim 0.005/\text{sec}$

(K,FF) Accidentals: $\sim 0.0002/\text{sec}$

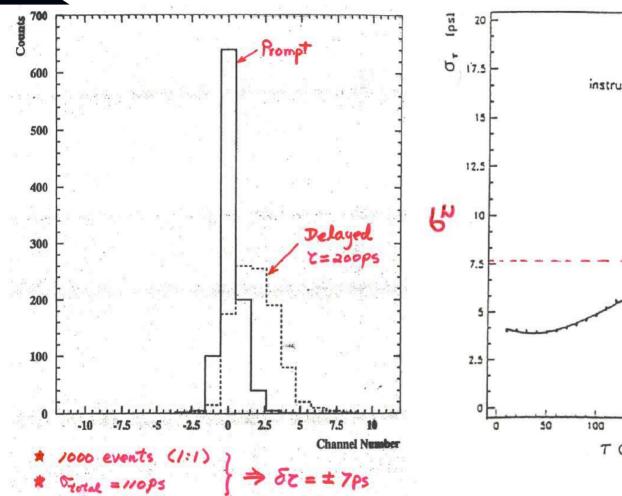
■ S/A: ~ 25

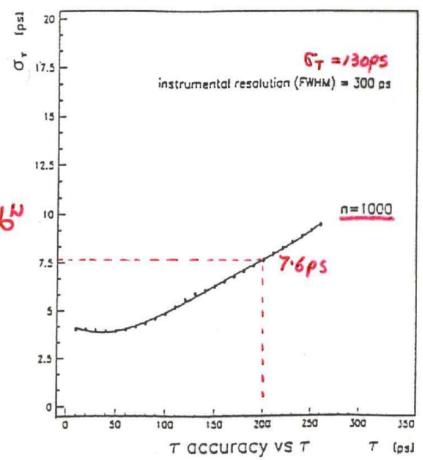

Prompt by Acc.: $\sim 4\%$

Prompt by KID backgrounds: $\leq 5\%$

Tag on Hypernuclear Production by Kaon Momentum Selection

Assumed beam energy1.645 GeV


Gate to the bound region to avoid contamination from free $\Lambda \to \pi N$ decay followed by π absorption

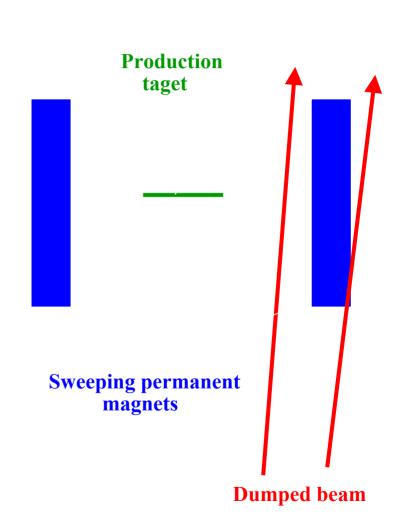


Time Components and Lifetime Fit

- If gated to the bound region, the decay time spectrum contains:
 - Delayed (>90%)
 - Prompt (can be studied precisely)
- Fit by 3 variables: N_p , N_t and τ $N_p *F_p(t) + N_t *\int F_p(\tau t) F(\tau) dt$
- Systematic errors:
 - Time zero (1.67ps or <1%)
 - Prompt $F_p(t)$ (<5ps or <2.5% if 1000 events)
- Dominated by statistical error from delayed t spectrum

Fit Accuracy (Statistical Error)

Beam Requirement


- Beam energy: 1.8 2.0 GeV (CW)
- Beam current: 10-20 μA
- Data collection time: 7 days
- System commissioning: 3 days
- Estimated setup time: 7-10 days
 - Remove Hall C target
 - Setup LPMWPC

Status of LPMWPC Development

- Built and well tested by CF252 source in 1999
- Test results show achievement of the required time and position resolutions
 - $(\sigma_1 \sim 120 \text{ ps and } \sigma_x \sim 150 \text{ mm})$
- Beam test was done in 2000, parasitically using dumped electron beam during the HNSS commissioning

Status of LPMWPC Development (Cont.)

- Miss tuned beam hitted the sweeping magnet with 1kW power
- Effective luminosity was much higher than actual experiment
- Clean fission signals were received,
 same as CF252 test
- No charge pile up effect was seen, i.e. sweeping magnets work well in sweeping low energy electrons
- Worked more than 24 hours before the wrapping aluminum foil melted

Status of LPMWPC Development (Cont.)

- LPMWPC was completely repaired and retested by CF252
- The performance characters restored
- It is ready for experiment
- We are confident that it will work under the experiment condition

Summary

- This experiment can measure the τ_L of heavy hypernuclei (A=208) directly with unprecedented precision and provide crucial A dependent test which is related to Γ_n/Γ_p ratio
- Hypernuclear production is positively tagged
- The experiment provides a feasibility test for the future experiment which detects two correlated α 's from 8 Be after nonmesonic decay of the ${}^{10}{}_{\Lambda}$ Be hypernuclei. It aims to measure Γ_n unambiguously with precision ≤10% as theory needed